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A generalized version of the Nagel-Schreckenberg model of traffic flow is presented that allows for con-
tinuous values of the velocities and spatial coordinates. It is shown that this generalization reveals structures of
the dynamics that are masked by the discreteness of the original model and thus helps to clarify the physical
interpretation of the dynamics considerably. It is shown numerically that the transition leading from the free
flow regime to the congested flow regime bears strong similarities with a first-order phase transition in
equilibrium thermodynamics. A similar behavior is observed in more complicated microscopic models and in
hydrodynamical descriptions of traffic flow, putting the model within a broader context of other models of
traffic flow. An additional advantage of this continuous model is that it is much easier to calibrate with
empirical data, only slightly decreasing numerical efficiency.@S1063-651X~96!08810-1#

PACS number~s!: 05.60.1w

I. THE NAGEL-SCHRECKENBERG MODEL

There are many model approaches to describe traffic in a
more or less detailed way@1–5#. One approach that stands
out for its simplicity is the simulation of traffic using cellular
automata@6–11#. The idea behind this approach is that ex-
tremely crude microscopic modeling, based on a caricature
of individual driver behavior, may be sufficient to capture
the main macroscopic aspects of traffic, like the fundamental
diagram, appearance of traffic jams, and so on.

The model proposed by Nagel and Schreckenberg in@6#
tries to model basically two properties of road traffic:~1!
Cars travel at some desired speed, unless they are forced to
slow down to avoid collisions with other vehicles.~2! Inter-
actions are short ranged and can be approximated as being
restricted to nearest neighbors. In the model approach it is
assumed that imperfections in the way drivers react can be
modeled as noise.

The velocity and consequently the positions of the cars
can only assume integer values between 0 andvmax, where
vmax itself is an integer. Comparisons with measured data
show thatvmax should be no larger than 3@12# to acquire
correct values for the density where the model displays its
maximum flow.

Clearly the discreteness of the model does not correspond
to any property of real traffic. Therefore the question comes
up naturally if there are any properties of the cellular au-
tomaton dynamics that can be identified as consequences of
the discrete structure of the model. To answer this question
we will present a model in which the state variables assume
real values. This model can be interpreted as the limiting
case of a series of cellular automaton models with different
resolutions.

II. NAIVE CONTINUOUS LIMIT

Before actually performing the continuous limit we first
have to consider the scale transformation between the model
and reality to find out how the limit has to be performed. Let
us assume that there is a maximum density of carsrmax in
the system~which was implicitly assumed to be equal to 1 in

the original model!. Settingrmax to values smaller than 1
corresponds to a finer spatial resolution. Obviously the con-
tinuous limit is performed lettingvmax→` and rmax→0.
Since the productvmaxrmax determines the time scale to
which one time step in the model corresponds, the continu-
ous limit has to be performed in such a way thatvmaxrmax is
kept constant.

In the cellular automaton~CA! noise is introduced by de-
celerating cars by an amount of 1~which is equal to the
maximum acceleration! randomly with probability pbrake
~usually set to 1/2!. In the models with higher spatial resolu-
tion ~wherevmax and consequently the maximum accelera-
tion amax go to infinity! this is generalized to an equipartition
between zero andamax. Although this generalization appears
to be straightforward, we will see that it does not yield an
optimum agreement between successive models in the limit-
ing process. The cellular automaton rules for the intermedi-
ate models are given in the Appendix.

Figure 1 shows the fundamental diagrams for a succession
of models and the continuous limit. The update rules used for
the continuous model are given as follows:

vdes5min@v~ t !1amax,vmax,sgap~ t !#,

v~ t11!5max@0,vdes2snran,0,1#, ~1!

x~ t11!5x~ t !1v~ t11!,

wheresgap(t) is the free space to the car ahead,amax is the
maximum acceleration,nran,0,1 is a random number in the
interval ~0,1!, and s is the maximum deceleration due to
noise. For the continuous model that is reached as the limit
of the sequence of CA models the parameters are
amax5s51, but they can, of course, have different values.

There are two features visible in Fig. 1 that arise from the
changes. The first one is that the system appears to become
less sensitive against the noise, leading to a significantly in-
creased flow. However, this increase is due to a difference in
the statistics of the noise in the discrete and the continuous
model, as will be shown below. Second, the behavior of the
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fundamental diagram changes for very high densities in such
a way that the curve approaches the value zero with vanish-
ing slope.

III. INTERPRETATION OF THE FEATURES

We will only give qualitative explanations for the effects
and limit our attention to the continuous model.

The main difference between the continuous model and
the CA at high densities is that in the continuous case gaps of
a length smaller than 1 can appear in the system. Loosely
speaking those gaps are less likely to be used efficiently by
the individual drivers than the larger ones. This is in fact
quite realistic and appears to be of great importance when the
model is calibrated. For a quantitative analysis note that for
very high densities a car having a gapg in front of the
bumper will assume a velocity ofg before the randomization
step. It is then decelerated to some velocity in the interval
(0,g). The probability that it is decelerated to a nonzero
value is g/s, where any of these values is assumed with
equal probability. So the mean velocity of the car will be

^v&gap5g5
g2

2s
~2!

after the update. Now it is very plausible and confirmed by
numerical calculations that the gap distribution becomes
strictly exponential for very high densities. In that case we
know that 2sgap

2 5(sgap)
2, so Eq.~2! can be used to calculate

the mean velocity and the flow in the system. For the flow
we thus get the asymptotic form:

q5
~12r!2

sr
for r→1. ~3!

In Fig. 2 it can be seen that this is in excellent agreement
with the results of the numerical calculations.

The above mentioned increase of the maximum flow can
be traced back to differences in the statistics of the free flow.
Note that when performing the continuous limit we general-
ized the random deceleration by zero or 1 in the CA model to
a deceleration that is continuously equipartitioned between
zero and 1~this corresponds to setting the parameters to
amax51 ands51). In this way the CA model and the cor-

responding continuous model assume the same values for the
mean acceleration and the mean velocity in the free flow.

Other statistical parameters, however, are still different.
The most important parameters are the variance of the veloc-
ity and of the acceleration in the free flow, because they
determine the probability of interactions between the cars. In
the continuous model used so far these are much lower than
in the CA. This reduces the number of interactions and the
probability that interacting cars cause a jam. Details on the
role that the variance plays in determining interaction param-
eters are discussed in the next section.

To show that an adjustment of the continuous model to
the CA is possible in the maximum flow regime we choose
the parametersvmax, amax, and s in such a way that the
mean velocitŷ v&, the mean acceleration̂a&, and the accel-
eration variancêa2&2^a&2 in the free flow are equal in both
models.

Choosing the parameters in this way yields a slightly
higher velocity variance in the continuous model because the
conditions requires.amax, so some cars are decelerated to
a velocity that does not allow them to reachvmax within one
time step again. An adjustment of the velocity variance
would require the usage of a more complicated distribution
in the randomization step.

Now the discrete and the continuous model compare very
favorably in the free flow and the maximum flow regime,
while the behavior is, as expected, still completely different
for high densities~see Fig. 2!.

The important result we have to keep in mind is that the
maximum flow is determined by the free flow statistics. This
fact may allow greatly simplified phenomenological theories
of the CA dynamics.

IV. FREE FLOW STATISTICS

We now try to get a rough quantitative idea of how the
statistics of the free flow determine the maximum flow. For
this end we look at two neighboring cars that are assumed to
move freely without any interactions. It will be possible to

FIG. 1. Sequence of models converging towards the continuous
limit.

FIG. 2. Comparison between the fundamental diagram of the
discrete and the continuous version of the Nagel-Schreckenberg
model. The parameters chosen for the continuous model correspond
to thepbrake50.5,vmax53 case of the discrete model. We have used
amax5(11A3)/2, s5A3 and vmax52.561A3/2. The asymptotic
behavior is drawn from Eq.~3!.
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see which parameters determine the probability of interac-
tions.

If the cars do not interact with each other, their individual
velocity distributionsPv1

(v1 ,t) andPv2
(v2 ,t) are uncorre-

lated and the time evolution of the distributionPg(x,t) of the
gap between the two of them can be described by the simple
master equation

Pg~x,t11!5E Pg~x1v12v2 ,t !Pv1
~v1 ,t !

3Pv2
~v2 ,t !dv1dv2 . ~4!

Taking moments of the gap distribution we find

^x&~ t11!5^x&~ t !1~^v2&2^v1&!,
~5!

dx2~ t11!5dx2~ t !1dv1
2~ t !1dv2

2~ t !,

wheredy2 denotes the variance of the quantityy.
Now two simple cases will be looked at: The first case is

that the last interaction of the cars has taken place a long
time ago, so the velocity distributions of both cars are equal
and stationary. The second case is that the cars are in the
phase of acceleration, so the distributions are not necessarily
equal and are certainly time dependent.

In the first case the mean gap between the cars is constant,
while the width of the gap distribution increases asAt. Hav-
ing two cars with a mean gap̂x& we can estimate the mean
time between interactions as the time it takes for the width of
the distribution to reach a threshold where interaction takes
place, say^x&2vmax. Averaging over all cars we get the
mean timet between interactions:

t'a
S 1r 212vmaxD 2

^v2&2^v&2
, ~6!

wherea is a parameter of order 1 andr denotes the density
of cars in the system.

From this expression we see that the number of interac-
tions in the homogeneous flow is proportional to the velocity
variance. On the other hand, inserting the value for the mean
gap yields a value of, for instance,t'20 in the region of
maximum flow. This means that even though we know that
interactions are of great importance in this regime they are
still rare in a homogeneous flow. In addition it can be shown
that interactions between at least three cars are needed to
decelerate the cars to a velocity close to zero. Such events
are extremely rare, as can be seen in Fig. 3. This already
gives us a hint that the decrease of the flow cannot appear
due to interactions in the homogeneous flow but must be a
consequence of the appearance of jams.

Next we look at two accelerating cars. If the acceleration
distribution is denoted byPa , the master equation for the
velocity distribution reads:

Pv~v,t11!5E Pv~v2a,t !Pa~a!da, ~7!

from which we get

^v&~ t11!5^v&~ t !1^a&,
~8!

dv2~ t11!5dv2~ t !1da2.

If we assume that the two cars start fromv5ngap50 and the
successor starts accelerating one time step after his predeces-
sor@Pv1

(t)5Pv2
(t21)#, we get for the evolution of the gap:

^x&~ t !5^a&t,
~9!

dx2~ t !5~2t11!da2.

So the probability that the cars interact again during the
phase of acceleration is determined by the ratio

r a5
^a&2

da2
. ~10!

This parameter is in fact the most important parameter in the
maximum flow region. This can be seen if we perform the
following limit in the continuous model:

s→0 , ^a&→0, with
s

^a&
52. ~11!

In Fig. 4 the fundamental diagram for this limit is shown. To
calculate the limit a sequence of models with decreasing but
nonzeros was considered. We see that the amount by which
the maximum flow changes when the limit is performed is
comparatively small, becauser a is kept contant. Note that
this limit is different from the deterministic limit

FIG. 3. Time evolution of the velocity of a randomly chosen car
slightly below the density of maximum flow (r50.17).

FIG. 4. The limits→0,̂ a&→0,s/^a&52.
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(s/^a&→0), which is also depicted in Fig. 4 , in spite of the
fact that there is no more noise in the free flow.

V. PHASE SEPARATION

Looking at the fundamental diagram we see that the flow
density relation can be remarkably well approximated by a
linear function over a wide range of densities in the con-
gested flow region. The most obvious explanation for this is
that the system decomposes into two phases, a phase of free
flow and a phase of congested flow. The two phases are in a
kind of dynamical equilibrium with each other, which
closely resembles the thermal equilibrium between a liquid
and a vapor in their coexistence regime. This picture will be
exploited subsequently, but note that we have a system far
from equilibrium here without any thermodynamic potential.
Because of the equilibrium between the congested flow
phase and the free flow phase any changes in the overall
density of the system simply result in changes of the fraction
of cars that can be found in either of the two phases, where-
reas the properties of the phases~i.e., mean flow and mean
density! remain unchanged. To support this very suggestive
picture we look at the gap distribution for different densities.

Figure 5~a! shows the gap distribution of the continuous
model for different overall densities. Each of the distribu-
tions clearly exhibits two maxima. The positions of the
maxima do not change significantly over a wide range of
densities. Note that the lower maximum of the distribution is
assumed at a nonzero value. This means that the equilibrium
state of congestion in the two-phase region is not that of a
‘‘densely packed’’ queue of cars but rather a state with in-
termediate density.

This contrasts with the behavior of the original cellular
automaton. In the CA model the maximum of the gap distri-
bution of the congested regime is assumed for the value zero,
which means that the jam is densely packed. This behavior is
clearly unrealistic. In reality the spontaneously formed jams
have a density significantly lower than for instance the den-
sity of a jam building up behind a blockage.

The qualitative picture described above can also be quan-
tified. For this end we look at a series ofN simulations in the
range of densitiesrk(k51, . . . ,N) where we expect phase
separation to take place. For these simulations we get gap
distributionsPk(x). Now assume that thePk(x) can be writ-
ten in the form

Pk~x!5nkP
~ j !~x!1~12nk!P

~ f !~x!, ~12!

whereP( j ) andP( f ) are the gap distributions of the jammed
regions and the free regions, respectively. We assume that
P( j ) andP( f ) are independent of the densityrk . Thenk are
not independent variables, but are instead determined by the
fact that the sum of all gaps has to be equal to the length of
the system minus the space occupied by the cars. The corre-
sponding equation for thenk is derived multiplying Eq.~12!
by x and integrating over the whole range of possible gaps.
The integration yields

nk5
^x& f2^x&k
^x& f2^x& j

, ~13!

where^x& f , ^x& j , and^x&k denote the mean gap with respect
to the distributionsP( f ), P( j ), andPk . Equations~12! and
~13! can now be used to compute the unknown distributions
Pj andPf . Note that Eq.~12! is basically a system of non-
linear equations for the 2Nb unknown P( f )(xi) i51, . . . ,Nb

,

P( j )(xi) i51, . . . ,Nb
, whereNb is the number of bins used to

describe the distributions. In order to solve this system of
equations, one has to provide at least two data sets for dif-
ferentPk(x). If more data sets are provided, there will not be
an exact solution to the problem any more and only the best
approximate solution with respect to some appropriately de-
fined distance measure can be found. This distance measure
will be defined below.

It is also possible to decompose the gap distribution into a
distribution for a jammed state and a free state using certain
microscopic information about the individual events instead
of a great number of different experiments. A simple guess
would be to attribute cars to the jammed state if their veloc-
ity is below some threshold, sayvmax/2, and to the free state
if it is above the threshold. The very details of the criterion
used to separate the distributions do not seem to be crucial;
many different criteria work with sufficient accuracy.

Figure 6 shows the gap distributions arising from the two
decomposition methods. We see that they agree reasonably
except for the small gaps in the free phase. The microscopic
method attributes less cars to the free phase in this region,

FIG. 5. Probability distribution of distances for different densi-
ties. Parameters chosen arevmax53, amax51, s51.

FIG. 6. ~a! Probability distributions for the free flow and the
congested flow phases, respectively, obtained from the separation
ansatz.~b! Probability distributions obtained from a microsimula-
tion compared with the distributions shown in~a!. The microscopic
criterion used to construct the distributions isv>vmax/2 ~free flow!.
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which is not surprising, because a simple threshold criterion
is not able to distinguish between slow cars in a jam and
slow cars in the free phase.

The distributionsP( f ) and P( j ) are worth a closer look.
First, what may be a little unexpected is the fact that the
distribution of the free phaseP( f ) assumes nonvanishing val-
ues down to gaps of size zero. In this sense the ‘‘free’’ phase
is different from really free conditions at very low densities,
where there is a sharp cutoff at nonvanishing values for the
gap size. The small gaps originate from interactions between
the cars that do not suffice to finally cause a jam. Clearly the
number of such events in the system is proportional to the
number of cars in the free phase as long as the density in the
free phase does not change significantly. So it is not surpris-
ing that the ansatz~12! brings out these events automatically.
The time evolution of the velocity of a randomly chosen car
in Fig. 3 also shows events of this kind. Again the picture of
a liquid and its vapor may be helpful: The interactions that
do not cause macroscopic jams are an analog to randomly
generated aggregations of gas molecules that do not reach
the critical size allowing them to evolve into a macroscopic
droplet.

Next we look at the gap distributionP( j ) for the jammed
state. The distribution exhibits a peculiar behavior near gaps
of sizevmax, where more events are counted than expected.
The additional events counted in this range originate from
the outflow region of the jams. As the number of such events
is proportional to the number of jammed cars as long as the
length distribution of the jams does not change too much, the
ansatz~12! therefore attributes them to the jammed phase.
The assumption of a constant length distribution of the jams
is justified, because direct interactions between the jams are
rare.

One important thing we have to keep in mind is the fact
that different phases~i.e., spontaneously formed macroscopic
inhomogeneties! can only exist in a range of densities
rc1,r,rc2 , whererc1 andrc2 are the densities in the free
and the jammed phases, respectively.

After having understood how phase separation takes place
in the continuous model we can compare this to the cellular
automaton. We can again use the same ‘‘decomposition an-
satz’’ ~12! and find the discrete distributionsP( j ) and P( f )

that fit the ansatz best. Defining an appropriate distance mea-
sure we can then compute the distance between the vector
space spanned by the ansatz~12! and the simulation results.

A reasonable measure for the distance between two
binned distributionsqi andpi is

d~q,p!5
( i~qi2pi !

2

( iqipi
. ~14!

The denominator is needed in this case to make sure that
d(q,p)'d(q̂,p̂) if ( q,p) and (q̂,p̂) are binned distributions
with different resolutions corresponding to the same under-
lying continuous distribution. Otherwise the continuous
model and the cellular automaton could not be compared
directly.

To compare the continuous and the discrete models the
decomposition was performed using experiments with densi-
ties ranging in an interval ofDr50.1. Then the mean dis-
tance between the space spanned by the ansatz and the ex-

perimental distributions was computed using the above
distance measure. For the discrete model the distance was
approximately four times as large as for the continuous
model, the order of magnitude being 1022.

The result again is not too surprising. The distance is
considerably smaller in the continuous case due to the fact
that the system has more degrees of freedom, but the picture
of the separating phases is justified very well in both cases.

VI. CONCLUSIONS

The dynamics of the Nagel-Schreckenberg model bears
considerable structure. Many of the interesting features of
this model, however, are masked by the limitations of its
discrete state space. It has been shown that an analogous
model with continuous state variables can be constructed as
the limit of a series of discrete models with different spatial
resolutions.

In the continuous model the dynamics of the system for
different densities can be nicely resolved into the following
stages.

0,r<rc1: Free flow. Interactions between the cars are
rare, leading to the formation of small ‘‘droplets’’ which
immediately dissolve. Each car travels approximately at its
desired speed~physical analog: dilute gas!.

rc1,r<rc2: Phase separation. The system decomposes
into regions of ‘‘free’’ flow and jammed regions~physical
analog: saturated vapor in equilibrium with liquid phase!.

rc2,r<1: Rehomogenization. The whole system is con-
gested~physical analog: compressible liquid without coexist-
ing vapor!. Because of the exponential tail of the distance
distribution it is possible that fast cars can exist, but such
cars get immediately dissolved in the ‘‘liquid.’’

Spontaneously formed jams can only exist for densities
r betweenrc1 andrc2. This is in fact a well known feature
of hydrodynamical models of traffic flow@1# and of micro-
scopic models with more complicated, deterministic dynam-
ics @4,5,13#. So far it was not clear whether or not there is an
analog for that in the CA model. Note that the lower critical
density rc1 is not identical with the density of maximum
flow, but slightly lower. It has been found@14# that the time
the system needs to relax into an equilibrium state diverges
at this density.

Using continuous variables also allows one to adjust dif-
ferent statistical parameters of the free flow and of the highly
congested flow independently, whereas in the original model
one parameter determines the complete statistics. This is a
highly desirable feature when it comes to the calibration of
the model to empirical data. First experiences with the cali-
bration of the model@12# also seem to indicate that the be-
havior of the continous model for high densities is essential
to reproduce spontaneous jamming and dense jamming be-
hind a blockage, for instance, quantitatively within one
model.

It has been shown that much of the dynamics of the model
in the region of maximum flow can be understood looking
only at the statistics of the free flow region. This may be a
basis for simplified theories of the cellular automaton and
related models. As a first simple example of this the impor-
tant role of the acceleration noise could be elucidated look-
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ing at the statistics of two noninteracting cars.
The main differences between the CA model and the con-

tinuous model arise in the limit of very high density. Apart
from that limit the dynamics in both models are not substan-
tially different. So despite the great advantages that the con-
tinuous model bears, its investigation has confirmed the va-
lidity of the calculations performed within the framework of
the original CA model.

APPENDIX: THE INTERMEDIATE MODELS

The intermediate models used for the fundamental dia-
grams in Fig. 1 are defined as follows:

vdes5min@v~ t !1amax,vmax,ngap~ t !#,

v~ t11!5max@0,vdes2nran,0,amax#, ~15!

x~ t11!5x~ t !1v~ t11!,

where all variables are integers. For the results displayed in
Fig. 1 vmax was chosen to be an integer multiple of 3. The
maximum accelerationamax was set tovmax/3, nran,0,amax de-
notes an integer random number between 0 andamax. The
gap is calculated as the difference of the positions that the
centers of the cars have minus the length of one car, which is
equal to 1/rmax.
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